Curriculum Physik Klasse 11-G9 (2 Std.)

Fassung vom 06.06.2015

1. <u>Lehrplaneinheit: Newtons Mechanik</u> (30 Stunden)

Inhalte	erweiterte Inhalte	Kompetenzen	Ergänzungen
Wiederholung der Begriffe Kraft	Trägheitssatz,	1A, 2, 8	
und Impuls aus Klasse 7/8	Impulserhaltung bei Kräftegleichgewicht		
		2	
Vektoraddition von Kräften und Geschwindigkeiten,		2, 4	
Zerlegung von Kräften und Geschwindigkeiten			
Impuls, Impulsänderung,	Beispiele zur Anwendung		
Gleichung $\Delta p = F \cdot \Delta t$,	der Gleichung $\Delta p = F \cdot \Delta t$	8, 9, 10	
Modellbildung, Formeln für Sonderfälle: $F=m\cdot a$,		2, 9	
Kreisbewegung, Zentripetalkraft			
	Verkehrsphysik-Bremsvorgänge, Bewegungen mit Luftwiderstand	10B, 5B	Waagrechter und schiefer Wurf
	Eine Formel für die Zentripetalkraft, Physik und Verkehr, Zentrifugalkraft	4, 10B, 5B	
			Physik auf dem
			Volksfest
			Gravitation

2. <u>Lehrplaneinheit : Radioaktivität und Kernphysik</u> (15 Stunden)

Inhalte	Erweiterte Inhalte	Kompetenzen	Ergänzungen
Atomaufbau	Atomkern, Atomhülle	10	
			Schülerexperimente
Radioaktive Stoffe, Radioaktive Strahlung	Alpha, Beta, Gamma-Strahlung	2, 4A, 5, 10	
Radioaktiver Zerfall	Halbwertszeit	3, 10	
Coisea Müller Zähler		10	
Geiger-Müller-Zähler		10	
Wirkung ionisierender Strahlung	Anwendung radioaktiver Nuklide	5, 10	Gruppenpuzzle zu Strahlengefahr
	3 44 3 44 44 4 4	-, -	und Strahlenschutz
Kernreaktion	Chancen und Risiken technischer	10	
Kernspaltung	Anwendungen im Bereich der Kernenergie		Besichtigung eines AKWs
Kernreaktor			(Eventuell Exkursion nach
			Gundremmingen)

3. <u>Lehrplaneinheit: Erhaltungssätze</u> (15 Stunden)

Inhalte	Erweiterte Inhalte	Kompetenzen	Ergänzungen
Bewegungsenergie, Höhenenergie, Spannenergie,		2, 3, 4	
Energieerhaltungssatz der Mechanik	Beispiele zum Energieerhaltungssatz	5	
Actio und reactio, Impulserhaltung	Gerade elastische und uneleastische Stöße Energie und Impuls	2, 3, 4, 8, 10	Raketen, Stöße im Sport
Drehimpuls und Kreisel			
Historische Entwicklung von Weltbildern		6	

Übersicht über die Kompetenzen:

Bezeichnung (Ziffer)	Kompetenz
1	PHYSIK ALS NATURBETRACHTUNG UNTER BESTIMMTEN ASPEKTEN
1A	Die Schülerinnen und Schüler können zwischen Beobachtung und physikalischer Erklärung unterscheiden.
1B	Die Schülerinnen und Schüler können an einfachen Beispielen die physikalische Beschreibungsweise anwenden.
2	PHYSIK ALS THEORIEGELEITETE ERFAHRUNGSWISSENSCHAFT
	Die Schülerinnen und Schüler können die naturwissenschaftliche Arbeitsweise aus Hypothese, Vorhersage, Überprüfung
	im Experiment, Bewertung in ersten einfachen Beispielen anwenden.
3	FORMALISIERUNG UND MATHEMATISIERUNG IN DER PHYSIK
3A	Die Schülerinnen und Schüler können bei einfachen Beispielen den funktionalen Zusammenhang zwischen physikalischen
571	Größen erkennen, grafisch darstellen und Diagramme interpretieren.
3B	Die Schülerinnen und Schüler können einfache funktionale Zusammenhänge zwischen physikalischen Größen, die z.B.
	durch eine Formel vorgegeben werden, verbal beschreiben und interpretieren.
3C	Die Schülerinnen und Schüler können einfache, auch bisher nicht im Unterricht behandelte Formeln zur Lösung von
	physikalischen Problemen anwenden.
4	CDEZIEICOUEC MEZHODENDEDEDZODE DED DIWOW
4	SPEZIFISCHES METHODENREPERTOIRE DER PHYSIK
4A	Die Schülerinnen und Schüler können einfache Zusammenhänge zwischen physikalischen Größen untersuchen.
4B	Die Schülerinnen und Schüler können erste Experimente unter Anleitung planen, durchführen, auswerten, grafisch
	veranschaulichen und angeben, welche Faktoren die Genauigkeit von Messergebnissen beeinflussen.
4C	Die Schülerinnen und Schüler können an ersten einfachen Beispielen Strukturen erkennen und Analogien hilfreich einsetzen.
5	ANWENDUNGSBEZUG UND GESELLSCHAFTLICHE RELEVANZ DER PHYSIK
5A	Die Schülerinnen und Schüler können bei einfachen Problemstellungen Fragen erkennen, die sie mit Methoden der Physik
	bearbeiten und lösen.
5B	Die Schülerinnen und Schüler können erste physikalische Grundkenntnisse und Methoden für Fragen des Alltags sinnvoll

	einsetzen.
5C	Die Schülerinnen und Schüler können erste Zusammenhänge zwischen lokalem Handeln und globalen Auswirkungen
	erkennen und dieses Wissen für ihr eigenes verantwortungsbewusstes Handeln einsetzen.
5D	Die Schülerinnen und Schüler kennen charakteristische Werte der behandelten physikalischen Größen und können sie für
	sinnvolle physikalische Abschätzungen anwenden.
6	PHYSIK ALS HISTORISCH-DYNAMISCHER PROZESS
	Die Schülerinnen und Schüler kennen erste einfache Beispiele dafür, dass physikalische Begriffe nicht statisch sind, sondern
	sich historisch oft aus alltagssprachlichen Begriffen heraus entwickelt haben.
7	WAHRNEHMUNG UND MESSUNG
1	Die Schülerinnen und Schüler können den Zusammenhang und den Unterschied zwischen der Wahrnehmung beziehungsweise
	Sinnesempfindung und ihrer physikalischen Beschreibung darstellen.
8	GRUNDLEGENDE PHYSIKALISCHE GRÖßEN
	Die Schülerinnen und Schüler können mit grundlegenden physikalischen Größen umgehen.
9	STRUKTUREN UND ANALOGIEN
	Die Schülerinnen und Schüler können Strukturen und Analogien erkennen.
10	NA TRUDED COMEINI INCENTUND TECHNICOME A NIMENDUNCEN
10	NATURERSCHEINUNGEN UND TECHNISCHE ANWENDUNGEN
10A	Die Schülerinnen und Schüler können elementare Erscheinungen in der Natur und wichtige Geräte funktional beschreiben.
10B	Die Schülerinnen und Schüler können physikalische Modelle auch in ihrem Alltag gewinnbringend einsetzen.