Chemie – Klasse 8 (G 8)

1. Chemie – eine Naturwissenschaft

ca. 2 Stunden

Den Schülerinnen und Schülern wird die Chemie als Naturwissenschaft vorgestellt. Sie lernen Fragestellungen kennen, mit denen sich das Fach Chemie auseinandersetzt. Darüber hinaus erkennen sie, dass chemische Vorgänge etwas Alltägliches sind. Die Schülerinnen und Schüler werden mit einfachen Arbeitsgeräten und mit deren Umgang vertraut gemacht. Sie werden in die sichere Handhabung von Geräten und Chemikalien eingeführt.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
Die Schülerinnen u 2.1.(6) Laborgeräte benennen und sachgerecht damit umgehen	3.2.1.1.(3) die Bedeutung der Gefahrenniktogramme nennen und daraus	Womit beschäftigen wir uns im Chemieunterricht?	Einordnung des Faches Chemie in den Kanon der Naturwissenschaften
2.2.(6) Zusammenhänge zwischen Alltagserscheinungen und chemischen Sachverhalten herstellen und dabei Alltagssprache bewusst in Fachspra- che übersetzen	renpiktogramme nennen und daraus das Gefahrenpotenzial eines Stoffes für Mensch und Umwelt ableiten	Sicherheit im Chemieunterricht, Erläuterung der Notengebung	Sicherheitsbelehrung, Betriebsanweisung, evtl. im Zusammenhang mit einfachen Experimenten
2.2.(8) die Bedeutung der Wissenschaft Chemie und der chemischen Industrie, [], für eine nachhaltige Entwicklung exemplarisch darstellen		Kennenlernen einfacher Arbeitsgeräte	SÜ: Brennerführerschein (vgl. BNT) Gerätedomino (vgl. BNT) SÜ: Messen von Volumina mit Hilfe von Bechergläsern, Messzylindern und Messkolben

2. Stoffeigenschaften

ca. 3 Stunden

Die Schülerinnen und Schüler nutzen ihr Alltagswissen über bekannte Stoffe und verknüpfen es mit neuen Erkenntnissen. Sie werden an den Stoffbegriff herangeführt. Sie untersuchen die Eigenschaften verschiedener Reinstoffe und lernen die Einteilung dieser Stoffe unter chemischen Gesichtspunkten kennen.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
		in onternent	Organisation, verweise
Die Schülerinnen u	und Schüler können	Untersuchung verschiedener Stoffe	SÜ: Untersuchung der Magnetisierbarkeit,
2.1.(1) chemische Phänomene erkennen, beobachten und beschreiben	3.2.1.1.(1) Stoffeigenschaften experimentell untersuchen und beschreiben	(Eisen, Kupfer, Kochsalz, Wasser, Schwefel, Magnesium, Silber)	Wasserlöslichkeit und elektrischen Leitfähigkeit
2.1.(5) qualitative und quantitative Experimente unter Beachtung von Sicherheits- und Umweltaspekten durchführen, beschreiben, protokollieren und auswerten	(Farbe, Geruch, Verformbarkeit, Dichte, Magnetisierbarkeit, elektrische Leitfähigkeit, Schmelztemperatur, Siedetemperatur, Löslichkeit)	Dichte als messbare Eigenschaft	SÜ: Dichtebestimmung an Feststoffen und Flüssigkeiten
2.1.(6) Laborgeräte benennen und	3.2.1.1.(2) Kombinationen charakteristischer Eigenschaften ausgewählter	Stoffbegriff	Thematisierung der Verwendung von
sachgerecht damit umgehen	Stoffe nennen ([] Wasser, Eisen, Kupfer, Silber, Magnesium [])	Abgrenzung zur Alltagssprache	Begriffen in anderen Lebensbereichen (z.B. Material, Substanz, Textilien)
2.1.(7) Vergleichen als naturwissen-			
schaftliche Methode nutzen			
2.3.(2) Bezüge zu anderen Unterrichtsfächern aufzeigen			

3. Stoffteilchen und Aggregatzustände

ca. 4 Stunden

Die Schülerinnen und Schüler begreifen, dass Stoffe aus Stoffteilchen aufgebaut sind. Sie verwenden den Teilchenbegriff für die Beschreibung der Aggregatzustände und für deren Übergänge sowie für Lösungs- und Diffusionsvorgänge.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
Die Schülerinnen ur 2.1.(10) Modelle und Simulationen nutzen, um sich naturwissenschaftliche Sachverhalte zu erschließen 2.2.(4) chemische Sachverhalte unter	und Schüler können 3.2.1.2.(3) mithilfe eines geeigneten Teilchenmodells (Stoffteilchen) Aggregatzustände, Lösungsvorgänge, Diffusion und BROWNSCHE Bewegung	Stoffe bestehen aus Stoffteilchen	SÜ: Diffusionsversuch
Verwendung der Fachsprache und gegebenenfalls mithilfe von Modellen	be- schreiben 3.2.1.2.(4) die Größenordnungen von Teileben (Atema Maleküle Makroma	Lösungsvorgang im Stoffteilchenmodell	SÜ: Lösen von Kochsalz und Eindampfen der Lösung
schaulichen oder erklären leküle), 7 kel) und	leküle), Teilchengruppen (Nanoparti- kel) und makroskopischen Objekten vergleichen chen ei ra-	Aggregatzustände im Stoffteilchenmodell	Kugelmodell, Gittermodell eines Feststoffes
		Übergänge zwischen den Aggregatzuständen	SÜ: Schmelzen von Eis Schmelzvorgang auf der Teilchenebene (Film) SÜ: Erstarrungskurve von Stearinsäure
2.3.(1) in lebensweltbezogenen Ereig- nissen chemische Sachverhalte erken- nen		Diffusion und BROWNSCHE Bewegung	Verteilung von Methylenblau in Wasser
		Größenvergleich von Atomen, Nanopartikeln und sichtbaren Objekten	Atom: 0,1 – 0,5 nm Nanopartikel: 10 – 100 nm
			Staubkorn: ab 10000 nm
			Vergleich mit dem Planetensystem (Sonne, Erde, Mond)

4. Reinstoffe und Stoffgemische

ca. 3 Stunden

Die Schülerinnen und Schüler vertiefen ihre Kenntnisse über die Stoffeigenschaften mithilfe des Stoffteilchenmodells. Sie kategorisieren Stoffe des Alltags sowie Stoffe aus dem Unterrichtskontext hinsichtlich ihrer Stoffteilchen. Sie nutzen ihr Wissen über die Stoffeigenschaften, um ein Stoffgemisch zu trennen.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
Die Schülerinnen u 2.1.(5) qualitative und einfache quanti-	und Schüler können 3.2.1.1.(4) ein Experiment zur Tren-	Unterscheidung Reinstoff und Gemisch	Stoffbegriff auf der Teilchenebene
tative Experimente unter Beachtung von Sicherheits- und Umweltaspekten durchführen, beschreiben, protokollieren und auswerten 2.1.(6) Laborgeräte benennen und sachgerecht damit umgehen 2.2.(4) chemische Sachverhalte unter Verwendung der Fachsprache und gegebenenfalls mithilfe von Modellen und Darstellungen beschreiben, veranschaulichen oder erklären	nung eines Stoffgemischs planen und durchführen 3.2.1.1.(5) an einem ausgewählten Stoff den Weg von der industriellen Gewinnung aus Rohstoffen bis zur Verwendung darstellen (zum Beispiel Kochsalz) 3.2.1.1.(6) ein sinnvolles Ordnungsprinzip zur Einteilung der Stoffe darstellen und anwenden (Metall, Nichtmetall, Reinstoff, homogene und heterogene Stoffgemische Lösung, Legierung, Suspension, Emulsion, Rauch, Nebel)	Klassifizierung von: Lösung Suspension Emulsion Rauch Nebel Legierung	Beispiele für Gemische: Salzlösung Spiritus/Wasser Kreide-Wasser-Gemisch Schmutzwasser Öl-Wasser-Gemisch Milch Staubwolke Nebel Messing Bronze
2.2.(5) fachlich korrekt und folgerichtig argumentieren		Trennung eines Stoffgemisches	SÜ: Trennung eines Stoffgemisches
2.2.(6) Zusammenhänge zwischen Alltagserscheinungen und chemischen Sachverhalten herstellen und dabei Alltagssprache bewusst in Fachspra- che übersetzen			

5. Chemische Reaktion

ca. 8 Stunden

Die Schülerinnen und Schüler erkennen eine chemische Reaktion anhand ihrer Merkmale (Stoffumsatz, Energieumsatz) und begreifen sie als Umgruppierung beziehungsweise Neuanordnung von Teilchen. Sie können aus ihren Beobachtungen Rückschlüsse auf den energetischen Verlauf einer Reaktion ziehen und diesen in Energiediagrammen veranschaulichen. Die Schülerinnen und Schüler erkennen in ihrer lebensnahen Umwelt eine Vielzahl von Vorgängen, die sie nun als chemische Reaktionen wahrnehmen.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
Die Schülerinnen ւ	ınd Schüler können	Stoffumsatz bei chemischen	SÜ: Kupfersulfid-Synthese
2.1.(1) chemische Phänomene erkennen, beobachten und beschreiben2.1.(5) qualitative [] Experimente	3.2.2.1.(1) beobachtbare Merkmale chemischer Reaktionen beschreiben 3.2.2.1.(2) ausgewählte Experimente	Reaktionen, Umgruppierung der Teilchen	Änderung der Stoffeigenschaften Modell zur Umgruppierung der Teilchen z. B. Legosteine
unter Beachtung von Sicherheits- und Umweltaspekten durchführen, be- schreiben, protokollieren und auswer- ten	zu chemischen Reaktionen unter Beteiligung von [] Schwefel, und ausgewählten Metallen planen, durchführen, im Protokoll darstellen und in	Energieumsatz bei chemischen Reaktionen (exotherm, endotherm) Energiediagramme	SÜ: Umsetzung von Kupfersulfat (wasserfrei) mit Wasser, Erhitzen von Kupfersulfat-Hydrat
2.1.(7) Vergleichen als naturwissenschaftliche Methode nutzen	Fach- und Alltagskontexte einordnen 3.2.2.1.(3) die chemische Reaktion als [] Neuanordnung von Atomen oder		Aufstellen und Interpretation von Energiediagrammen
2.1.(9) Modellvorstellungen nachvoll- ziehen und einfache Modelle entwi- ckeln	Ionen durch das Lösen und Knüpfen von Bindungen erklären 3.2.2.3.(1) energetische Erscheinun-	Einführung der Elementsymbole: erster Blick auf das Periodensystem	Notieren aller bisher besprochenen Elemente (S, Cu, Fe, Mg)
2.2.(3) Informationen in Form von Tabellen, Diagrammen, Bildern und	gen bei chemischen Reaktionen mit der Umwandlung eines Teils der in	Reaktionsschema	Reaktions"gleichung" in Worten
Texten darstellen und Darstellungsformen ineinander überführen 2.2.(4) chemische Sachverhalte unter Verwendung der Fachsprache und gegebenenfalls mithilfe von Modellen	Stoffen gespeicherten Energie in andere Energieformen erklären (Lichtenergie, thermische Energie, Schallenergie)	Herstellung von Metallsulfiden, Vergleich des energetischen Verlaufes der Reaktionen Aktivierungsenergie	SÜ: Herstellung von Eisensulfid LD: Kupfer/Schwefel Eisen/Schwefel

und Darstellungen beschreiben, ver-	3.2.2.3.(2) die Begriffe exotherm und	Veranschaulichung in Energiediagrammen	Zink/Schwefel
anschaulichen oder erklären	endotherm erklären und entsprechen-	Das Bindungsbestreben von Teilchen als	
2.2.(5) fachlich korrekt und folgerichtig	den Phänomenen zuordnen	Triebkraft der chemischen Reaktion dar-	
argumentieren	3.2.2.3.(3) energetische Zustände der	stellen.	
2.2.(6) Zusammenhänge zwischen Alltagserscheinungen und chemischen Sachverhalten herstellen und dabei Alltagssprache bewusst in Fachsprache übersetzen 2.2.(7) den Verlauf und die Ergebnisse ihrer Arbeit dokumentieren sowie adressatenbezogen präsentieren	Edukte und Produkte exothermer und endothermer Reaktionen vergleichen 3.2.2.3.(5) die Zufuhr von Energie als Voraussetzung zum Start chemischer Reaktionen erklären (Aktivierungsenergie) []	chemische Reaktionen im Alltag	Verbrennungsvorgänge, Wachstum von Pflanzen und Tieren, Kochen, Backen
5 1			

6. Stoffmenge, molare Masse, Atommasse

ca. 4 Stunden

Den Schülerinnen und Schüler werden die Begriffe "Stoffmenge", "molare Masse" und "Atommasse" veranschaulicht. Durch einfache Berechnungen und das wiederholte Verwenden der neuen Begriffe werden sie mit deren Umgang vertraut gemacht.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
Die Schülerinnen ւ	ınd Schüler können	Einführung der Stoffmenge	602 Trilliarden Teilchen
2.1.(12) quantitative Betrachtungen	3.2.2.2.(7) Berechnungen durchführen		
und Berechnungen [] durchführen	und dabei Größen und Einheiten korrekt nutzen ([] Atommasse, Teilchenzahl, Masse, Stoffmenge, molare Masse)	Eintunrung der mojaren Masse	M = m/n
2.2.(1) in unterschiedlichen analogen			einfache Berechnungen
und digitalen Medien zu chemischen Sachverhalten [] recherchieren			Arbeit mit dem PSE
2.3.(2) Bezüge zu anderen Unter-			keine stöchiometrischen Berechnungen
richtsfächern aufzeigen		Einführung der Atommasse	Einheit "unit" (u)
			Zusammenhang zwischen molarer Masse und Atommasse herstellen

7. Chemische Reaktionen und Massengesetze

ca. 5 Stunden

Die Schülerinnen und Schüler lernen das Gesetz von der Erhaltung der Masse kennen und wenden es auf die Reaktion von Kupfer mit Schwefel an. Anhand der Kupfersulfid-Synthese wird exemplarisch die experimentelle Ermittlung einer Verhältnisformel durchgeführt. Die Schülerinnen und Schüler werden durch intensives Üben in die Lage versetzt, Reaktionsgleichungen aufzustellen und auszugleichen.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise		
2.1.(5) [] einfache quantitative Experimente unter Beachtung von Sicherheits- und Umweltaspekten durchführen, beschreiben, protokollieren und auswerten 2.1.(12) quantitative Betrachtungen und Berechnungen [] durchführen, 2.2.(2) Informationen themenbezogen und aussagekräftig auswählen 2.2.(4) chemische Sachverhalte unter Verwendung der Fachsprache [] erklären 2.2.(5) fachlich korrekt und folgerichtig argumentieren	3.2.2.2.(1) den Zusammenhang zwischen Massen- und Atomanzahlerhaltung bei chemischen Reaktionen erläutern 3.2.2.2.(2) Experimente zur Massenerhaltung bei chemischen Reaktionen und zur Ermittlung eines Massenverhältnisses durchführen und unter Anleitung auswerten (Gesetz von der Erhaltung der Masse, Verhältnisformel) 3.2.2.2.(3) Reaktionsgleichungen aufstellen (Formelschreibweise) 3.2.2.2.(7) Berechnungen durchführen und dabei Größen und Einheiten korrekt nutzen ([] Atommasse, Teilchenzahl, Masse, Stoffmenge, molare Masse)	Gesetz von der Erhaltung der Masse quantitative Kupfersulfid-Synthese Ermittlung der Verhältnisformel von Kupfersulfid Aufstellen der Reaktionsgleichung der Kupfersulfidsynthese	SÜ: Verbrennung eines Streichholzes im verschlossenen Reagenzglas, Wägungen SÜ: Wägung des Kupfers vor der Reaktion und des entstandenen Kupfersulfids Berechnung der verbrauchten Stoffmengen von Kupfer und Schwefel Üben des Aufstellens von Reaktionsgleichungen anhand der in Bereich 4 durchgeführten Reaktionen Die Verhältnisformel der entstehenden Verbindungen wird jeweils vorgegeben.		
Lernstandserhebung (Diagnosebogen)					

8. Bestandteile der Luft

ca. 4 Stunden

Die Schülerinnen und Schüler lernen die Luft als ein Gasgemisch kennen. Sie können die Bestandteile der Luft in ihren Volumenanteilen sowie die Eigenschaften der wichtigen Bestandteile nennen. Sie kennen die Bedeutung des Kohlenstoffdioxid-Anteils für das Klima und sind in der Lage, dieses Thema im Hinblick auf die gesellschaftliche und die persönliche Relevanz zu reflektieren.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
	ınd Schüler können	Luft als Gemisch	Anknüpfung an Vorwissen
2.2.(1) in unterschiedlichen analogen und digitalen Medien zu chemischen	3.2.1.1. (2) Kombinationen charakteristischer Stoffeigenschaften	Volumenanteile der Gase	Kerze im geschlossenen Gefäß erlischt
Sachverhalten und in diesem Zu- sammenhang gegebenenfalls zu be-	(Stoffe, Stoffgemische) ausgewählter Stoffe nennen (Luft, Stickstoff,	Bestimmung des Sauerstoffgehalts der Luft	LD/SÜ: Kolbenprober-Versuch
deutenden Forscherpersönlichkeiten	Sauerstoff, Kohlenstoffdioxid, [])	Eigenschaften von Stickstoff, Sauerstoff, Kohlenstoffdioxid,	Unterhaltung der Verbrennung
recherchieren	3.2.1.1.(10) die Zusammensetzung	Edelgase	Dichte im Vergleich zur Luft
2.3.(2) Bezüge zu anderen Unterrichtsfächern aufzeigen	der Luft nennen und die Veränderungen des Kohlenstoffdioxidanteils hin-	Heimen and die Veranderun-	Edelgase: Internetrecherche
2.3.(6) Verknüpfungen zwischen per-	sichtlich ihrer globalen Auswirkungen bewerten (Volumenanteile von Stick-	ewerten (Volumenanteile von Stick- stoffdioxid	SÜ:
sönlich oder gesellschaftlich relevan- ten Themen und Erkenntnissen der	stoff, Sauerstoff, Edelgasen und Koh-		Glimmspanprobe
Chemie herstellen, aus unterschiedli-		Kalkwasserprobe	
chen Perspektiven diskutieren und bewerten	3.2.2.1.(6) Nachweise für ausgewählte Stoffe [] durchführen und beschreiben (Sauerstoff, Kohlenstoffdioxid [])	e [] durchführen und be-	Absprache mit Geografie, Biologie
2.3.(9) ihr eigenes Handeln unter dem Aspekt der Nachhaltigkeit einschätzen			
2.3.(10) Pro- und Contra-Argumente unter Berücksichtigung ökologischer			
und ökonomischer Aspekte verglei- chen und bewerten			

9. Oxidation, Reduktion, Redoxreaktion, Brandbekämpfung

ca. 11 Stunden

Die Schülerinnen und Schüler lernen die Oxidation, die Reduktion und die Redoxreaktion als Sauerstoffaufnahme, Sauerstoffabgabe und als Sauerstoffübertragung kennen. Bei der Durchführung und Auswertung der Experimente wenden sie ihr Wissen über chemische Reaktionen, das Aufstellen von Reaktionsgleichungen sowie den energetischen Verlauf von Reaktionen an. Die Schülerinnen und Schüler erlangen grundlegende Kenntnisse über die Brandentstehung, die Vermeidung von Bränden und die Brandbekämpfung.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise
Die Schülerinnen u	ınd Schüler können	Oxidation von Metallen	LD: Verbrennung von Metallpulvern
2.1.(1) chemische Phänomene erkennen, beobachten und beschreiben 2.1.(2) Fragestellungen, gegebenen-	3.2.2.1.(2) ausgewählte Experimente zu chemischen Reaktionen unter Beteiligung von [] Sauerstoff, Kohlen-	Das Bindungsbestreben von Teilchen als Triebkraft der chemischen Reaktion darstellen (edel/unedel).	(Kupfer, Eisen, Zink, Magnesium) Benennung der Oxide Aufstellen der Reaktionsgleichungen
falls mit Hilfsmitteln, erschließen 2.1.(5) qualitative [] Experimente unter Beachtung von Sicherheits- und	stoff und ausgewählten Metallen pla- nen, durchführen, im Protokoll darstel- len und in Fach- und Alltagskontexte	energetische Betrachtungen der durchgeführten Oxidationen	Energiediagramme entwickeln und ver- gleichen
Umweltaspekten durchführen, beschreiben, protokollieren und auswerten,	einordnen 3.2.2.1.(4) die Umkehrbarkeit von chemischen Reaktionen beispielhaft beschreiben (Synthese und Analyse)	Reduktion von Metallen	LD: Reduktion von Silberoxid durch Erhitzen Aufstellen der Reaktionsgleichung
2.1.(7) Vergleichen als naturwissenschaftliche Methode nutzen2.1.(8) aus Einzelerkenntnissen Re-	3.2.2.1.(7) den Zerteilungsgrad als Möglichkeit zur Steuerung chemischer Reaktionen beschreiben	energetische Betrachtung der Reduktion	Energiediagramm der Reduktion von Silberoxid entwickeln und interpretieren
geln ableiten und deren Gültigkeit überprüfen 2.2.(3) Informationen in Form von Tabellen, Diagrammen, Bildern und	3.2.1.1 (7) die Änderung der Stoffeigenschaften in Abhängigkeit von der Partikelgröße an einem Beispiel beschreiben (Nanopartikel, Verhältnis	Oxidation von Nichtmetallen	Verbrennung von Kohlenstoff (SÜ) und Schwefel (LD) Aufstellen der Reaktionsgleichungen
Texten darstellen und Darstellungsformen ineinander überführen 2.2.(6) Zusammenhänge zwischen	Oberfläche zu Volumen) 3.2.2.2.(3) Reaktionsgleichungen aufstellen (Formelschreibweise)	Redoxreaktionen mit Metallen/Metalloxiden bzw. Nichtmetallen/Nichtmetalloxiden	SÜ: Kupferoxid mit Kohlenstoff, Kupferoxid mit Eisen

Alltagserscheinungen und chemi-	3.2.2.3.(2) die Begriffe exotherm und		Aufstellen der Reaktionsgleichungen
schen Sachverhalten herstellen und	endotherm erklären und entsprechen-		Wiederholung der Erstellung von
dabei Alltagssprache bewusst in	den Phänomenen zuordnen		Energiediagrammen
Fachsprache übersetzen	3.2.2.3.(2) energetische Zustände der		
2.2.(9) ihren Standpunkt in Diskussio-	Edukte und Produkte exothermer und	Thermitversuch	
nen zu chemischen Themen fachlich	endothermer Reaktionen vergleichen	THEITHILVEISUCH	
begründet vertreten	3.2.2.3.(5) die Zufuhr von Energie als	Bedingungen für Verbrennungen	Branddreieck
2.2.(10) als Team ihre Arbeit planen,	Voraussetzung zum Start chemischer		
strukturieren, reflektieren und präsen-	Reaktionen erklären (Aktivierungs-	7. dellar are are d	LD. D. Arein der eine Heleldete e
tieren	energie) und mit der Energiezufuhr	Zerteilungsgrad	LD: z.B. Anzünden eines Holzklotzes und von Holzwolle
		Nanopartikel	
2.3.(1) in lebensweltbezogenen Er-	bei endothermen Reaktionen verglei-		LD: Mehlstaubexplosion
eignissen chemische Sachverhalte	chen		SÜ: pyrophores Eisen (Eisenoxalat)
erkennen	3.2.2.3.(7) Modellexperimente zur		, ,
2.3.(8) [] Berufsfelder darstellen, in	Brandbekämpfung durchführen und	Brandbekämpfung	Wasser und Kohlenstoffdioxid als
denen chemische Kenntnisse bedeut-	Maßnahmen zum Brandschutz ablei-		Löschmittel
sam sind	ten		verschiedene Feuerlöscher
2.3.(11) ihr Fachwissen zur Beurtei-			SÜ: Herstellung eines Kohlenstoffdioxid-
lung von Risiken und Sicherheits-			löschers aus Citronensäure, Natron und
maßnahmen anwenden			Wasser
			Erfahrungsberichte von der Jugendfeu-
			erwehr
			BO: Berufsfeld Feuerwehr, evtl. GFS
			Evtl. Exkursion Feuerwehr
			BNT: Energie effizient nutzen, Feuer
			löschen
	Lernstands	serhebung (Concept-Map)	

10. Wasser, Wasserstoff und molares Volumen

ca. 10 Stunden

Die Schülerinnen und Schüler verknüpfen ihre im Alltag gewonnenen Erfahrungen bezüglich des Stoffes Wasser mit neu gewonnenem Fachwissen. Sie lernen die Eigenschaften und die Verwendung sowie die Bedeutung von Wasserstoff insbesondere als Energieträger kennen. Die Einführung des molaren Volumens versetzt sie in die Lage, einfache Berechnungen zu Stoffmenge und Volumen von Gasen durchzuführen.

Prozessbezogene Kompetenzen	Inhaltsbezogene Kompetenzen	Konkretisierung, Vorgehen im Unterricht	Ergänzende Hinweise, Arbeitsmittel, Organisation, Verweise	
Die Schülerinnen u	ınd Schüler können	Bedeutung des Stoffes Wasser	Erstellung e <u>iner</u> Mindmap	
2.1.(3) Hypothesen bilden	3.2.1.1.(2) Kombinationen charakte-		siehe Fach BNT	
2.1.(4) Experimente zur Überprüfung von Hypothesen planen	ristischer Stoffeigenschaften ausgewählter Stoffe nennen ([] Wasser, Wasserstoff)	Wasserversorgung Wasseraufbereitung	Wasserversorgung der Region (evtl. GFS)	
2.1.(5) qualitative und einfache quantitative Experimente unter Beachtung von Sicherheits- und Umweltaspekten	3.2.1.3.(10) die besonderen Eigenschaften von Wasser erklären (Dichteanomalie, [])	uanti- ung ekten 3.2.1.3.(10) die besonderen Eigen- schaften von Wasser erklären (Dich-		Exkursion: Wasserwerk Ulm oder Landeswasserversorgung Langenau
durchführen, beschreiben, protokollie- ren und auswerten	3.2.2.1.(6) Nachweise für ausgewähl-		Besuch der Kläranlage	
2.1.(12) quantitative Betrachtungen und Berechnungen zur Deutung und Vorhersage chemischer Phänomene	te Stoffe [] durchführen und beschreiben ([] Wasserstoff, Wasser) 3.2.2.2.(7) Berechnungen durchführen und dabei Größen und Einheiten korrekt nutzen ([] molares Volumen)	Eigenschaften des Wassers (Dichteanomalie)	LD: Schmelzen von Wachs und Eis Interpretation des Dichtediagramms von Wasser	
einsetzen 2.2.(1) in unterschiedlichen analogen und digitalen Medien zu chemischen Sachverhalten und in diesem Zusam-		Eigenschaften von Wasserstoff	Brennbarkeit, Dichte im Vergleich zur Luft, Luftschiff Hindenburg	
menhang gegebenenfalls zu bedeu-	toren auf die Aktivierungsenergie	Wasserstoffnachweis	SÜ: Knallgasprobe	
tenden Forscherpersönlichkeiten re- cherchieren 2.2(8) die Bedeutung der Wissen-	beschreiben		SÜ: Herstellung von Wasserstoff aus verd. Salzsäure und Magnesium, pneu- matisches Auffangen	
schaft Chemie und der chemischen Industrie, auch im Zusammenhang mit		Wasserstoff als Energieträger	Internetrecherche (Medienbildung), Präsentation in Gruppen	

	Einführung des molaren Volumens	Satz von Avogadro
dem Besuch eines außerschulischen Lernorts, für eine nachhaltige Entwick- lung exemplarisch darstellen 2.3.(1) in lebensweltbezogenen Ereig- nissen chemische Sachverhalte er- kennen 2.3.(6) Verknüpfungen zwischen per- sönlich oder gesellschaftlich relevan- ten Themen und Erkenntnissen der Chemie herstellen, aus unterschiedli- chen Perspektiven diskutieren und bewerten		V_m = 24 l/mol (25°C) einfache Berechnungen mit V_m = V/n keine stöchiometrischen Berechnungen
	Ermittlung der Wasserformel	Wasserdampf Eudiometerversuch Hoffmannscher Wasserzersetzer
	Katalysatoren	LD: Entzündung von Wasserstoff mithilfe von Perlkatalysatoren Energiediagramm Nutzen des Abgaskatalysators

11. Hinweise zum Schulcurriculum

ca. 18 Stunden

Die Schülerinnen und Schüler festigen ihre bisher erworbenen Kompetenzen durch intensives Üben. Die Übungsphasen sind über das gesamte Schuljahr verteilt. Die zur Verfügung stehende Zeit wird insbesondere zur Entwicklung einer Experimentalkultur im Unterricht sowie zur Festigung anspruchsvoller Fachthemen genutzt.

Kompetenzen	Umsetzung im Unterricht	Hinweise
Festigung und Erweiterung der bisher erworbenen inhaltsbezogenen und prozessbezogenen Kompetenzen in den jeweils geeigneten Unterrichtssituationen	Erweiterung der experimentellen Fähigkeiten der Schülerinnen und Schüler	In allen Bereichen ist großer Wert auf die Entwicklung der Experimentalkultur im Unterricht zu legen. Dazu gehört der Umgang mit Geräten und Chemikalien unter Berücksichtigung der gültigen Sicherheitsbestimmungen, das exakte Protokollieren sowie die schülergerechte Deutung.
	Aufstellen von Reaktionsgleichungen	Das Üben des Aufstellens von Reaktionsgleichungen erfolgt in allen sinnvollen Unterrichtssituationen.
	chemisches Rechnen	Übung von Berechnungen mit der Formel $M = m/n$ und $V_m = V/n$
	Aufstellung und Interpretation von Energiediagrammen	Übung der Interpretation von Energiediagrammen
		Übung des Aufstellens von Energiediagrammen